tedf INRAQ

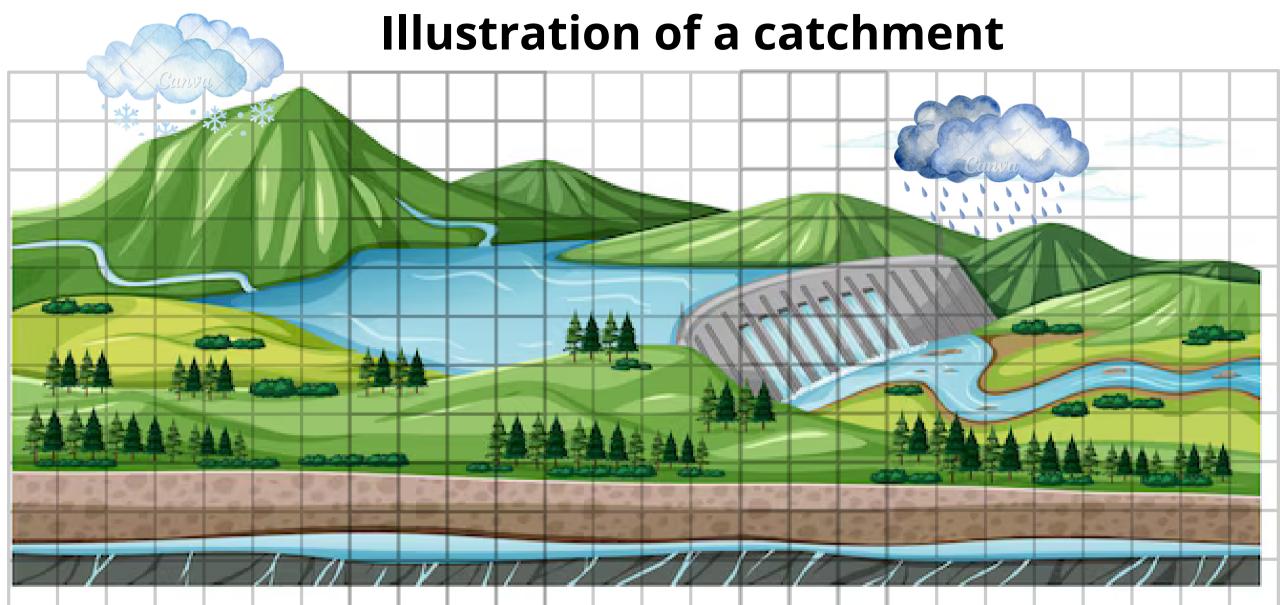
Improving Precipitation Interpolation Using Anisotropic Variograms Derived from Convection - Permitting Regional Climate Model Simulations

Valentin DURA, Guillaume EVIN, Anne-Catherine FAVRE, David PENOT

Data science pour les Risques Hydro-Climatiques et Côtiers, Roscoff

Monday 31th March, 2025

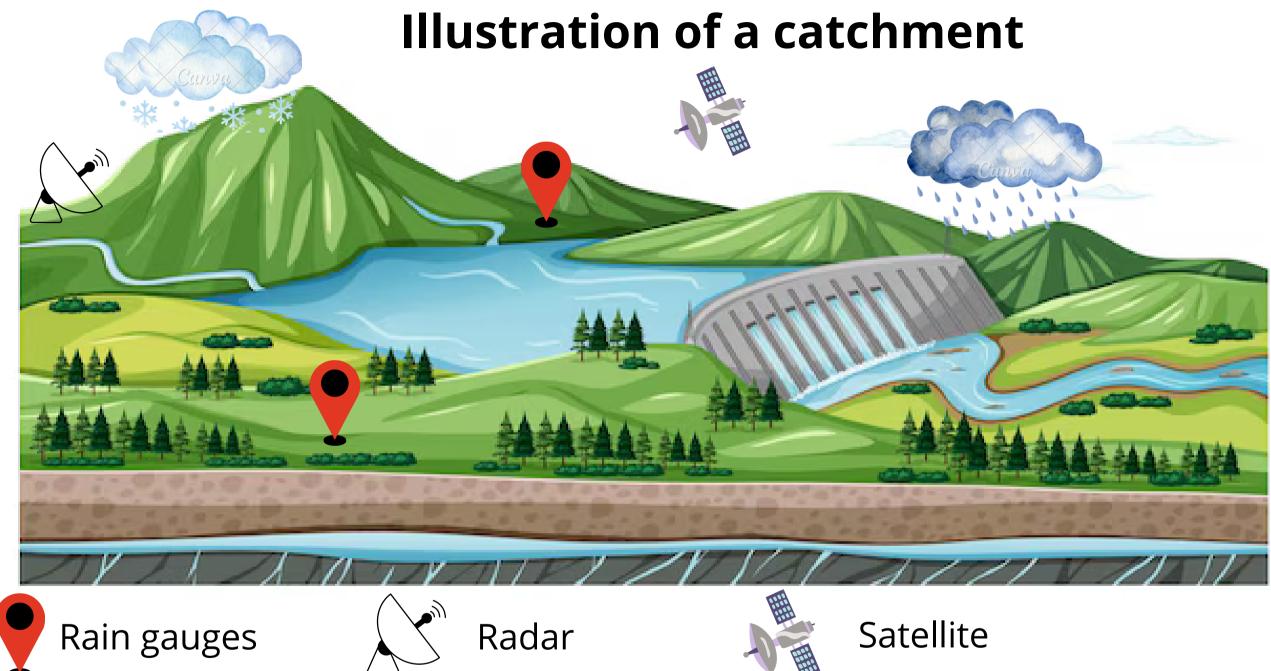
CONTEXT



Need gridded daily precipitation for:

- assessing flood risks,
- modeling glacier mass balance,
- evaluating climate models.

CONTEXT



Rain gauges are sparse and only located at low altitude Radars are subjected to beam blocking Satelittes have too coarse resolutions

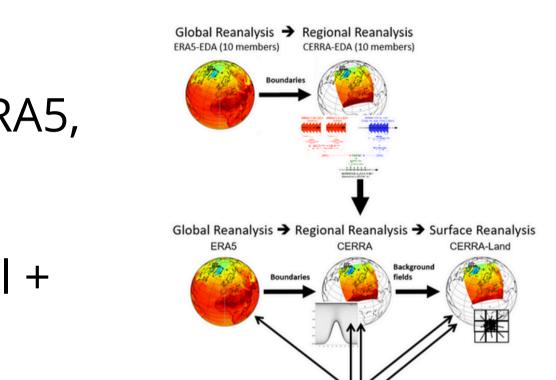
Spatial interpolation is required

Existing precipitation products

Reanalysis

<u>CERRA-Land</u> : daily 5.5 km, reanalysis associated to ERA5, Copernicus, (*Le Moigne, 2021*)

<u>SAFRAN, ARRA</u>: first guess from meteorological model + rain gauges, CNRM, (*Vidal et al., 2010*)



CONTEXT

Existing precipitation products

Reanalysis

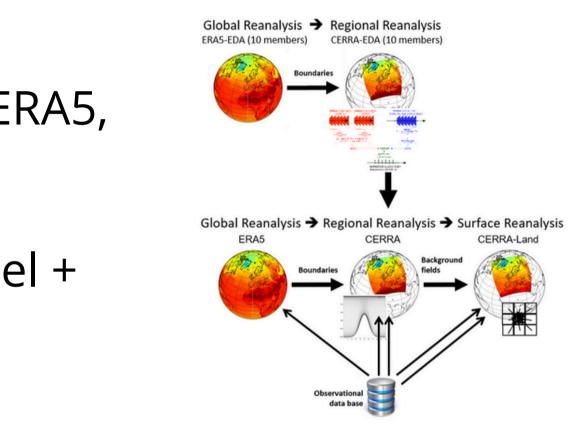
<u>CERRA-Land</u> : daily 5.5 km, reanalysis associated to ERA5, Copernicus, (*Le Moigne, 2021*)

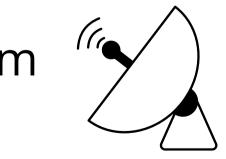
<u>SAFRAN, ARRA</u>: first guess from meteorological model + rain gauges, CNRM, (*Vidal et al., 2010*)

Precipitation Interpolators

<u>COMEPHORE</u>: hourly 1km , rain gauges + radar, beam masking due to mountains, (*Champeaux, 2009*)

<u>SPAZM</u>: daily 1km, rain gauges using local altitude - precipitation relationships stratified by weather patterns , EDF, (*Gottardi et al., 2012*)





Main challenges in precipitation interpolation for hydrological applications

• Accurate precipitation amounts in mountainous areas

• Accurate estimation of intense precipitation

Main challenges in precipitation interpolation for hydrological applications

Accurate precipitation amounts in mountainous areas

• Accurate estimation of intense precipitation

Present work

Comparison of covariance estimation for the spatial interpolation of intense precipitation

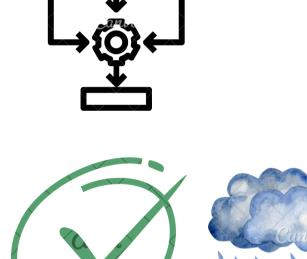
PLAN OF THE PRESENTATION

(1) Study domain and data

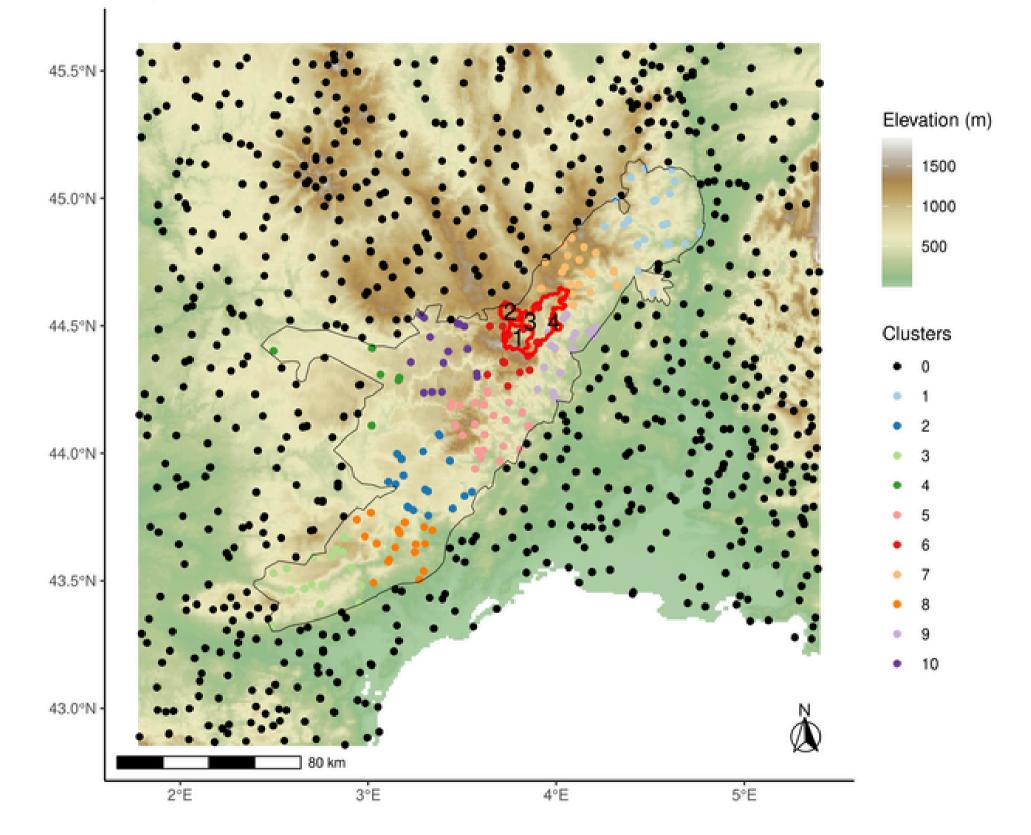
(2) Precipitation interpolation

(3) Precipitation evaluation

(4) Hydrological evaluation



STUDY DOMAIN AND DATA

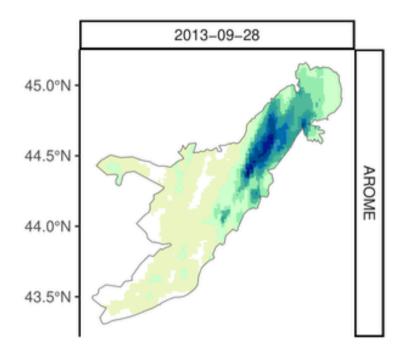


Focus on the **Cevennes** region over the 1982 - 2018 period, intense precipitations

1,700 m

Additional datasets

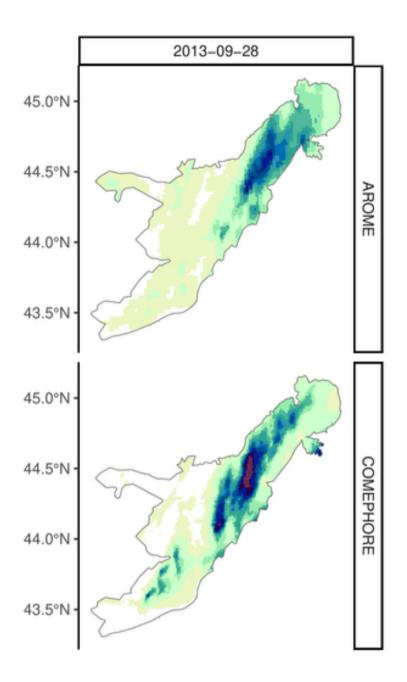
Daily **AROME** precipitation grids Simulations of the Convective - Permitting Regional Climate Model (CP-RCM) AROME= weather model driven by large-scale reanalysis Used to help spatial interpolation



Additional datasets

Daily **AROME** precipitation grids Simulations of the Convective - Permitting Regional Climate Model (CP-RCM) AROME= weather model driven by large-scale reanalysis Used to help spatial interpolation

Daily **COMEPHORE** precipitation grids Radar- rain gauges merging Used for evaluation

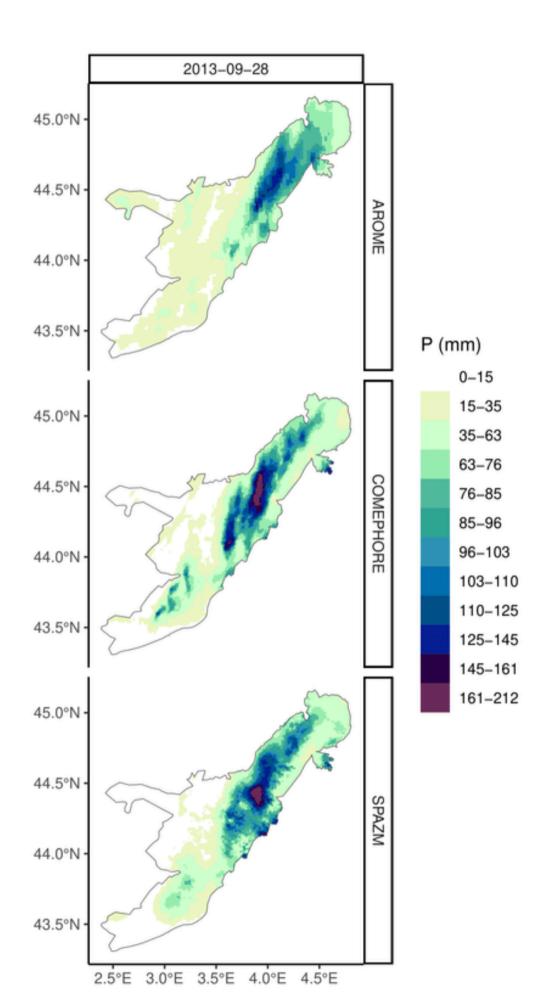


Additional datasets

Daily **AROME** precipitation grids Simulations of the Convective - Permitting Regional Climate Model (CP-RCM) AROME= weather model driven by large-scale reanalysis Used to help spatial interpolation

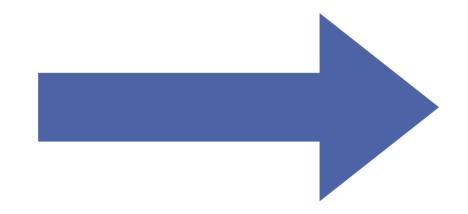
Daily **COMEPHORE** precipitation grids Radar- rain gauges merging Used for evaluation

Daily **SPAZM** precipitation grids Precipitation analyses used at EDF Used in comparison



STUDY DOMAIN AND DATA

Study domain and data



Precipitation interpolation

Trans-Gaussian Random Fields framework (*Diggle et al., 2003*)

Main steps

(1) Normalisation of daily rain gauge observations

(2) Modeling of the mean and the covariance of daily precipitation

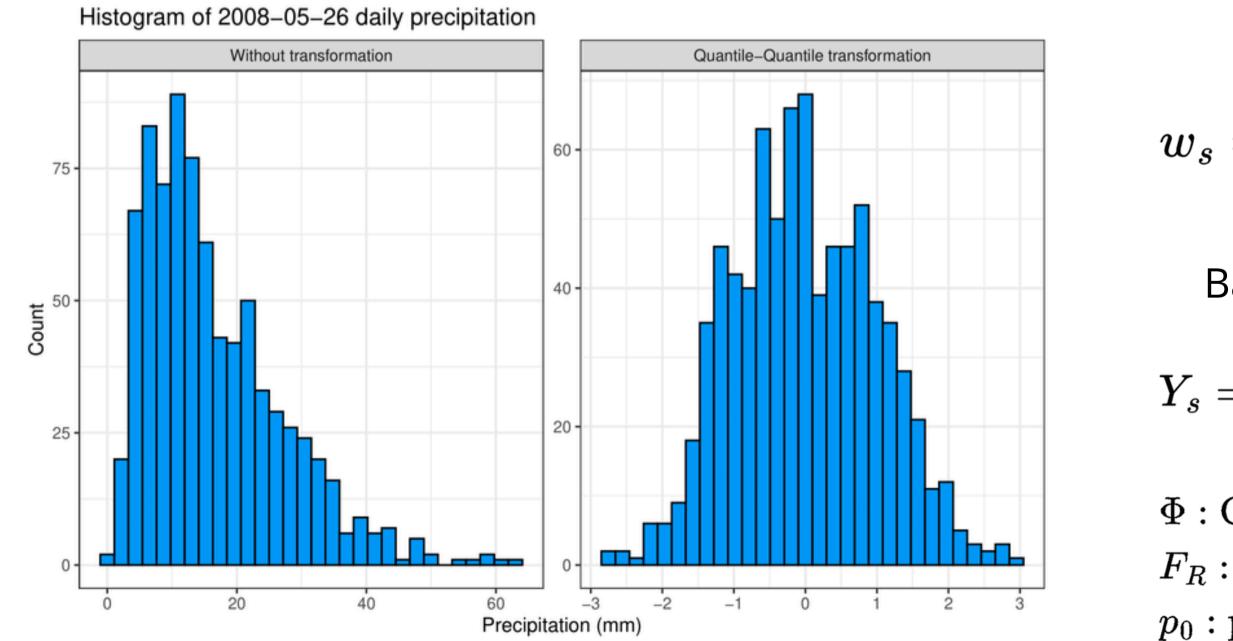
(3) Generation of 100 realisations (conditional simulations)

PRECIPITATION INTERPOLATION Normalisation

Lots of zeros and highly-skewed distribution

Quantile-Quantile transformation, maintain the skewness of observations

fitdistrplus R package (Delignette-Muller and Dutang, 2015) to fit the gamma distributions using maximum likelihood



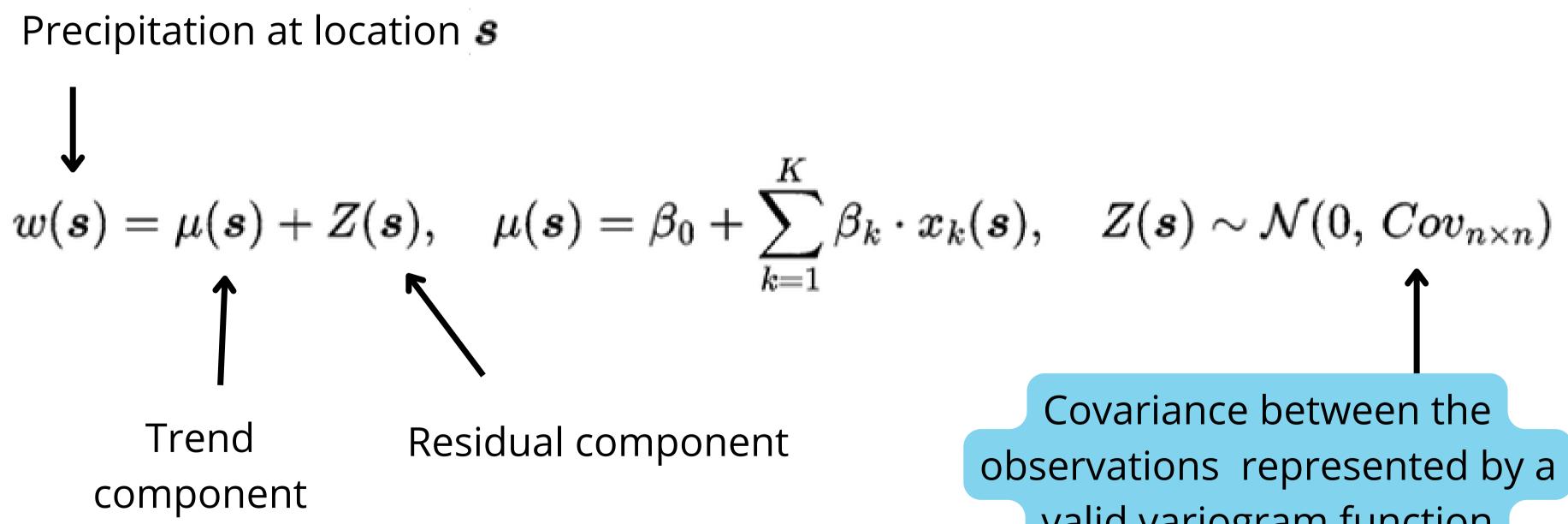
$$\mathsf{Transformation step} \ s = egin{cases} \Phi^{-1}\left[F_R\left(Y_s
ight)
ight], & Y_s > 0 \ \Phi^{-1}\left[p_0
ight], & Y_s = 0 \end{cases}$$

Back- Transformation step

$$= egin{array}{c} F_R^{-1} \left[\Phi \left(w_s
ight)
ight], & \Phi \left(w_s
ight) \geqslant p_0 \ 0, & \Phi \left(w_s
ight) < p_0 \end{array}$$

- Φ : Gaussian CDF
- F_R : Gamma CDF
- p_0 : proportion of dry observations

Geostatistics model



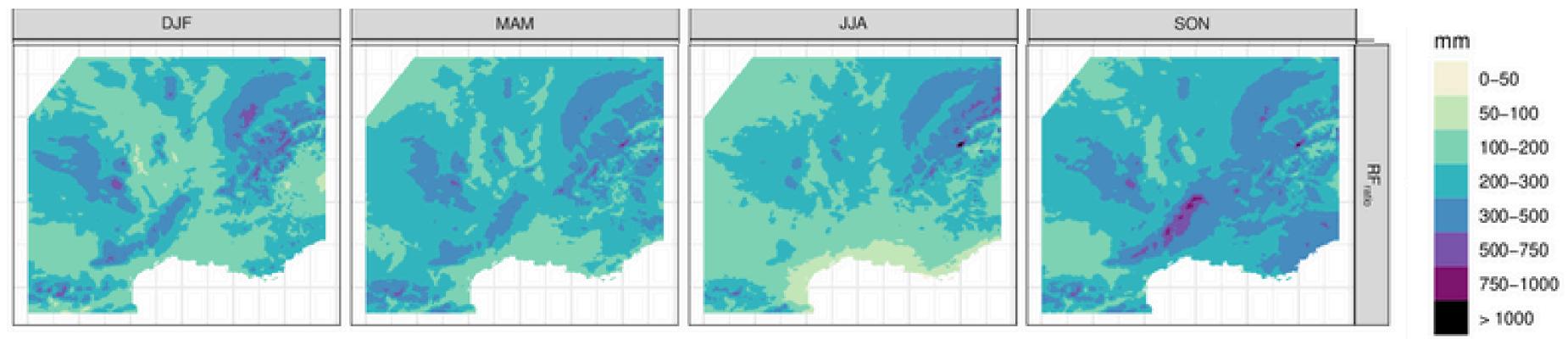
Covariance between the

observations represented by a valid variogram function

Modeling of the mean

$$egin{aligned} \mu(m{s}) &=& eta_0 + \ && eta_1 \cdot Longitude(m{s}) + \ && eta_2 \cdot Latitude(m{s}) + \ && eta_3 \cdot Altitude(m{s}) + \ && eta_4 \cdot SeasonalClimatology(m{s}) \end{aligned}$$

Seasonal climatological background fields (Dura et al., 2024)



Modeling of the covariance

second-order stationary variogram describes the dependance of semi-variance on the distance between the observations

Fitting of an exponential variogram with a nugget effect

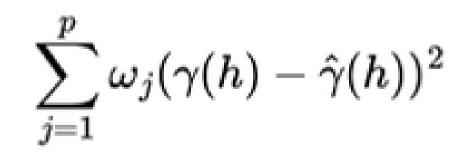
$$\gamma(h)=c_0+c_s\left(1-e^{-rac{h}{r}}
ight)$$

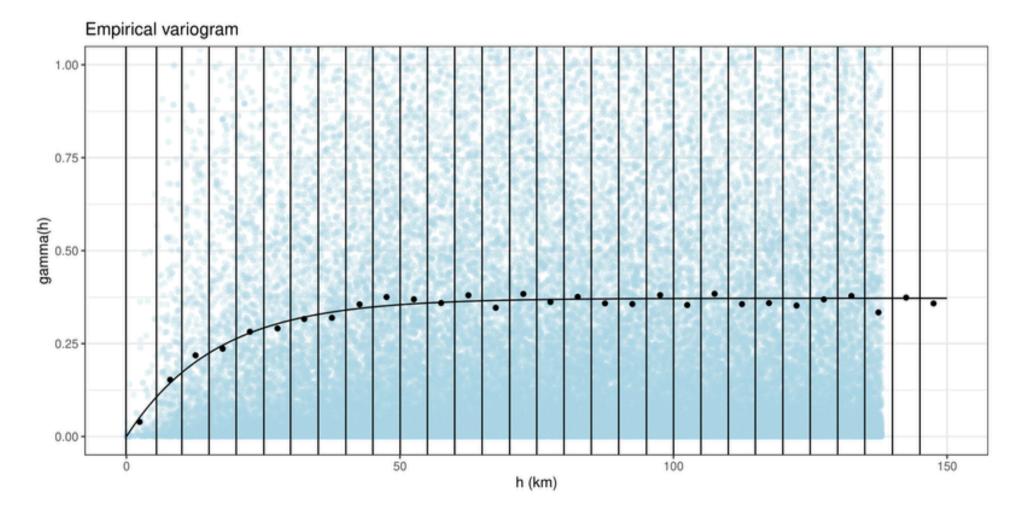
 c_0 : nugget

 c_s : partial sill

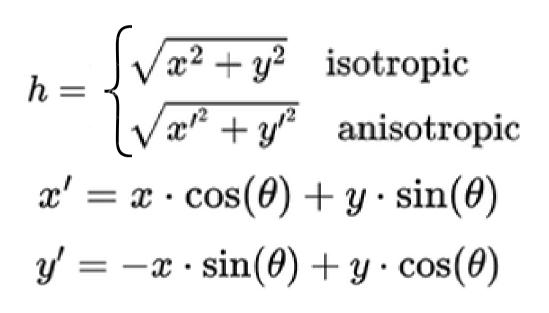
r : range

Weighted Least Square





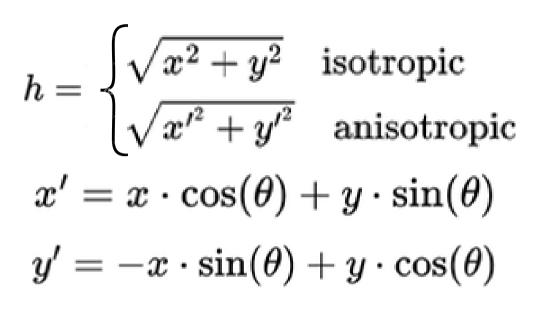
Modeling of the covariance





 θ : anisotropy angle η : anisotropy angle

Modeling of the covariance



heta : anisotropy angle η : anisotropy angle

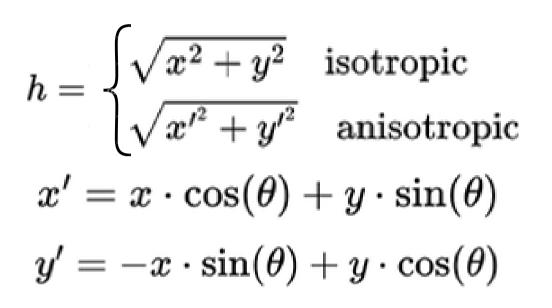
D	at	:a/

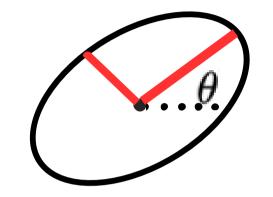
rain

a

/Structure	isotropic	anisotropic
n gauges	rgISO	rgANISO
irome	arISO	arANISO

Modeling of the covariance

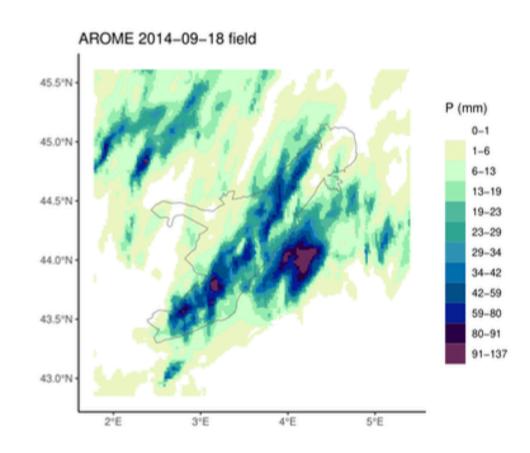




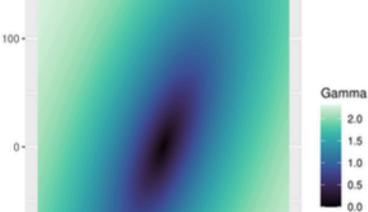
 θ : anisotropy angle η : anisotropy angle

rain

a



Anisotropic fitted variogram of 2014–09–18



dx (km)

100

dy (km)

-100-

-100

/Structure	isotropic	anisotropic
n gauges	rgISO	rgANISO
irome	arISO	arANISO

Anisotropy estimated southwest to northeast

Conditional simulations

Sequential Gaussian Simulation (Gyasi-Agyei, 2018)

(1) Choose a random prediction location s_0

Conditional simulations

Sequential Gaussian Simulation (Gyasi-Agyei, 2018)

(1) Choose a random prediction location s_0

(2) Compute the kriging mean $\hat{Y}(\mathbf{s}_0)$ and the kriging variance $\sigma_K^2(\mathbf{s}_0)$

Conditional simulations

Sequential Gaussian Simulation (Gyasi-Agyei, 2018)

(1) Choose a random prediction location s_0

(2) Compute the kriging mean $\hat{Y}(\mathbf{s}_0)$ and the kriging variance $\sigma_K^2(\mathbf{s}_0)$

(3) Draw a value : $Y^*(\mathbf{s}_0) \sim \mathcal{N}\left(\hat{Y}(\mathbf{s}_0), \sigma_K^2(\mathbf{s}_0)\right)$

Conditional simulations

Sequential Gaussian Simulation (Gyasi-Agyei, 2018)

(1) Choose a random prediction location s_0

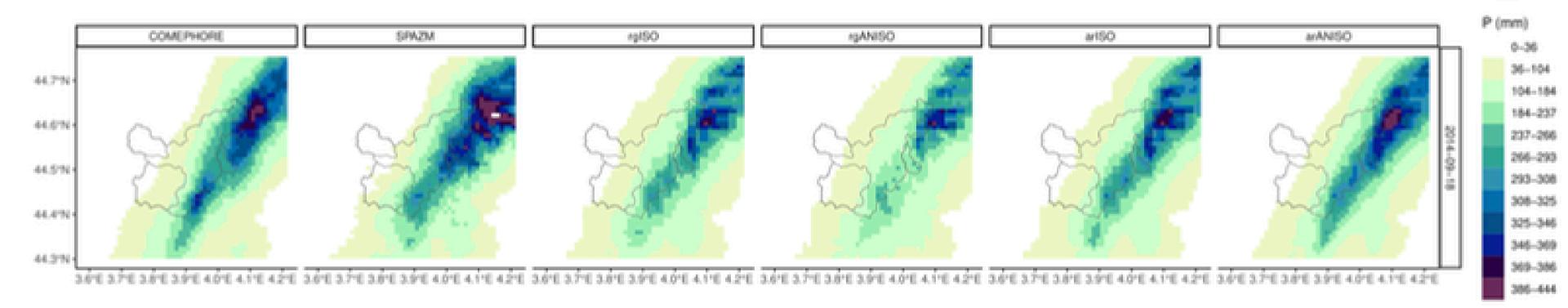
(2) Compute the kriging mean $\hat{Y}(\mathbf{s}_0)$ and the kriging variance $\sigma_K^2(\mathbf{s}_0)$

(3) Draw a value : $Y^*(\mathbf{s}_0) \sim \mathcal{N}\left(\hat{Y}(\mathbf{s}_0), \sigma_K^2(\mathbf{s}_0)\right)$

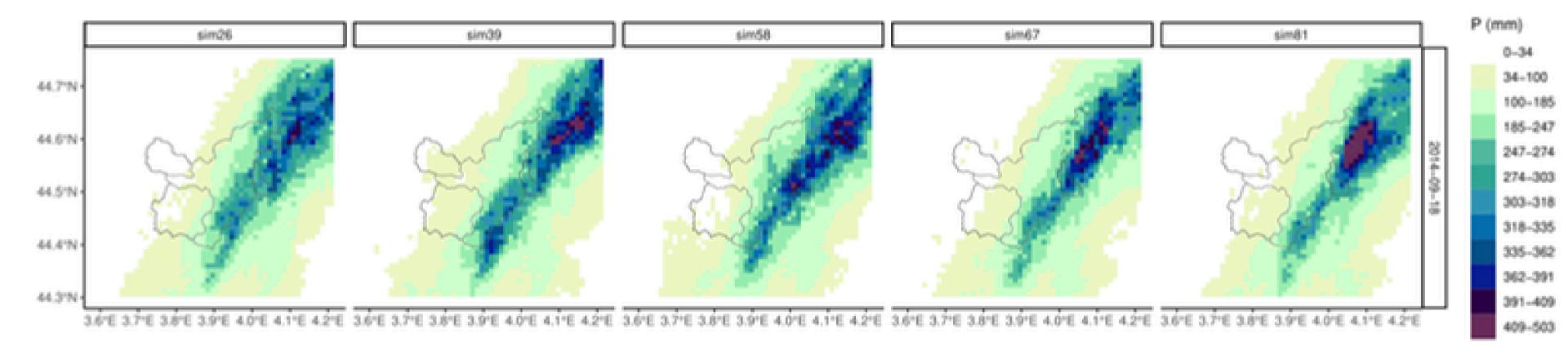
(4) Repeat steps (1), (2) and (3) until all prediction locations are simulated.

gstat R package (Pebesma, 2004) to produce the conditional simulations

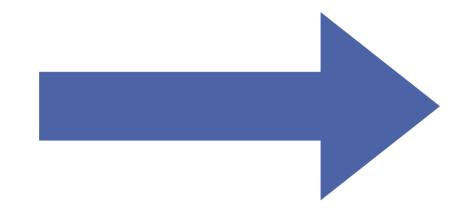
Mean of conditional simulations



Conditional simulations with arANISO model

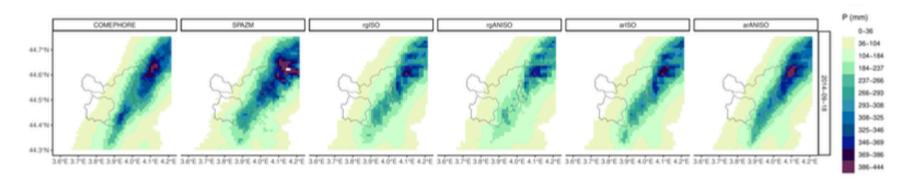


Precipitation interpolation



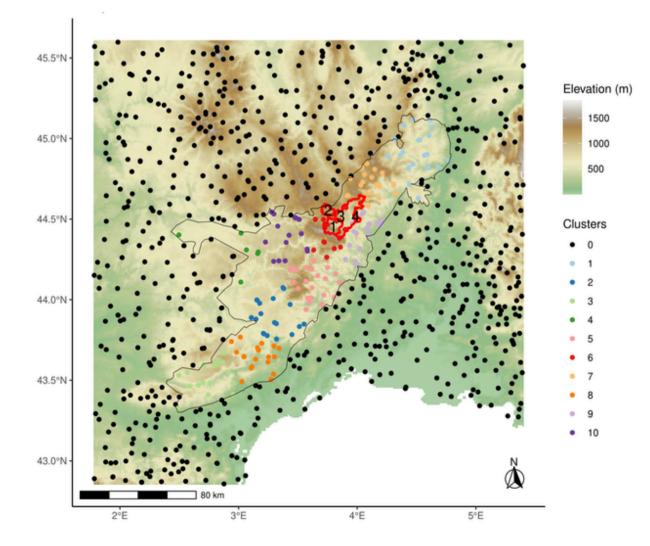
Precipitation evaluation

(1) Spatial evaluation on gradient image similarities, COMEPHORE as reference



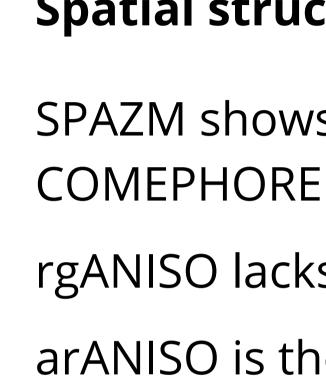
(2) Cross-validation CRPS: leave-one-cluster-out

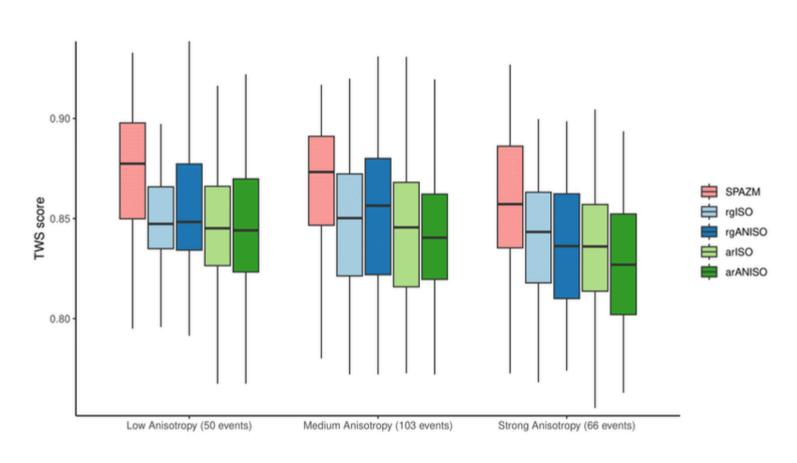
(3) Comparison of mean catchment precipitation, COMEPHORE as reference



3

PRECIPITATION EVALUATION

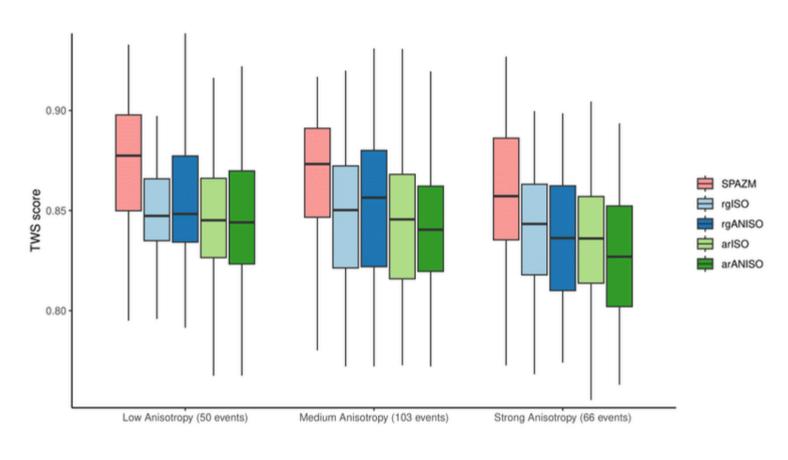




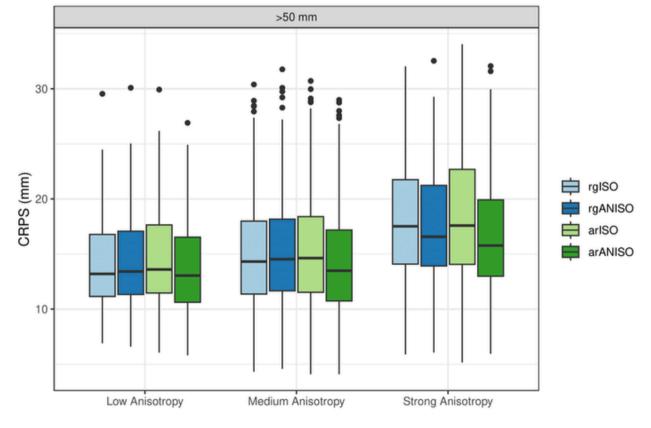
Spatial structure evaluation

- SPAZM shows poor resemblance to
- rgANISO lacks robutness
- arANISO is the most similar to COMEPHORE

COMEPHORE



CRPS distributions



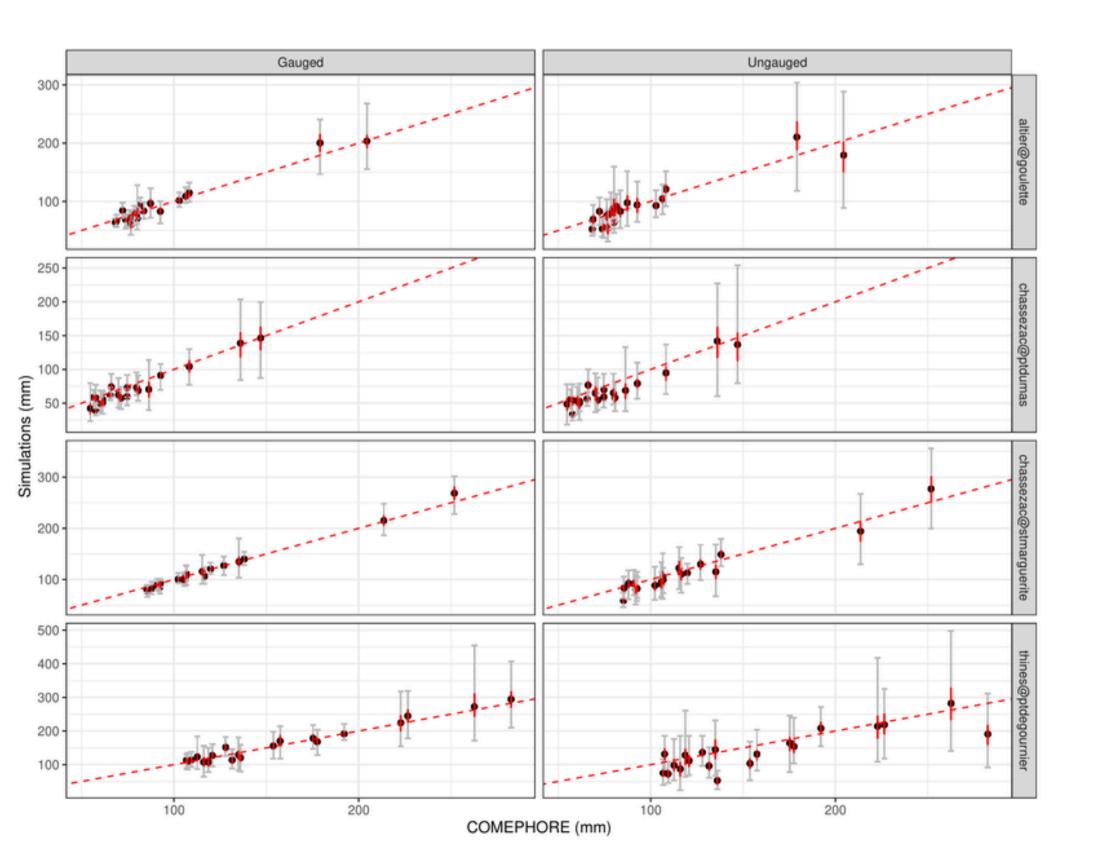
Spatial structure evaluation

- SPAZM shows poor resemblance to
- rgANISO lacks robutness
- arANISO is the most similar to COMEPHORE

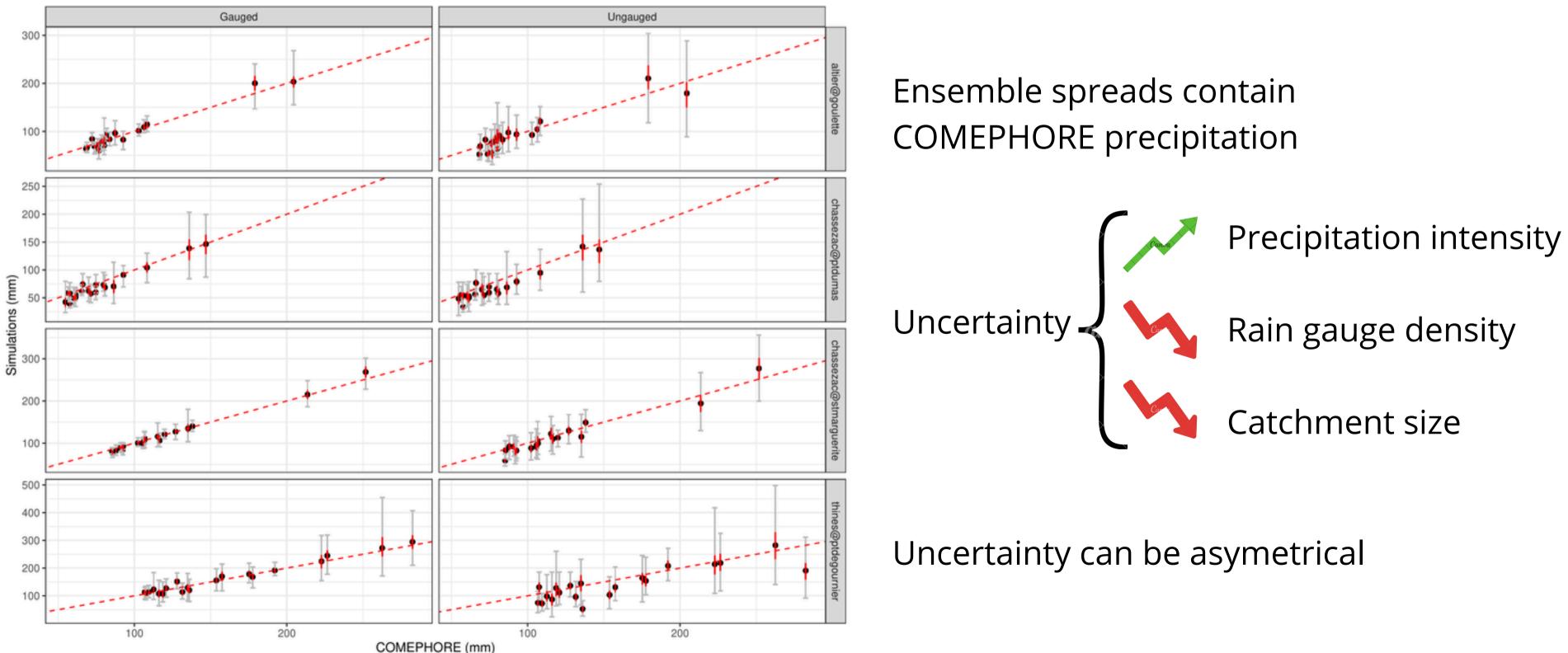
Cross-validation results

- arANISO has the best mean CRPS score
- SPAZM lacks robutness (not shown)

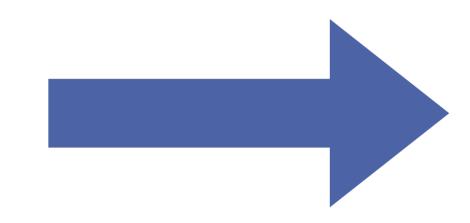
Mean catchment precipitation with arANISO model



Mean catchment precipitation with arANISO model



Precipitation evaluation

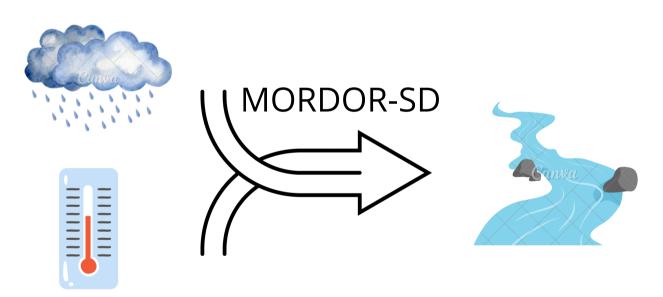


Hydrological evaluation

HYDROLOGICAL EVALUATION

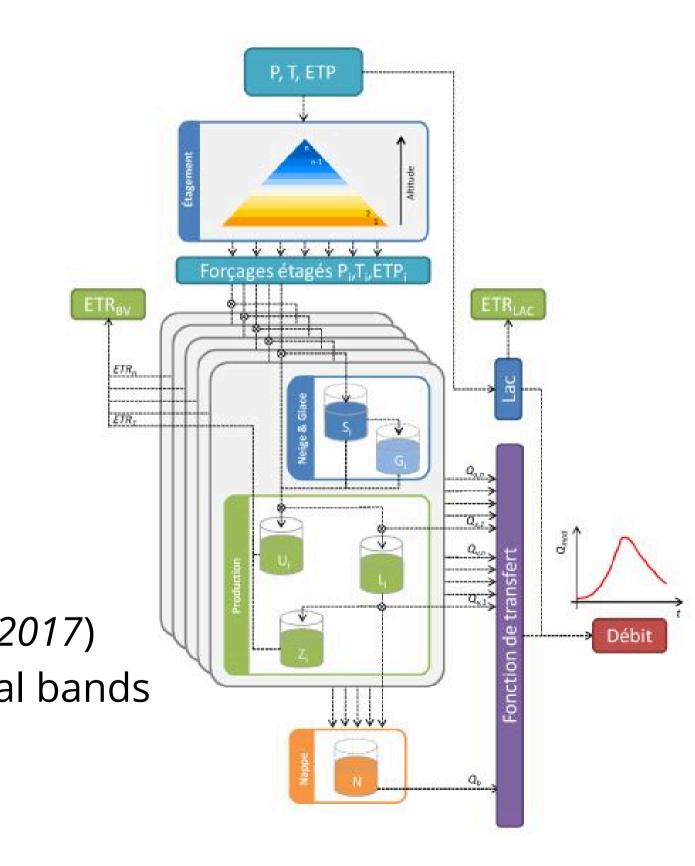
Hydrological Modeling

Are the conditional simulations able to reproduce the highest observed streamflows ?



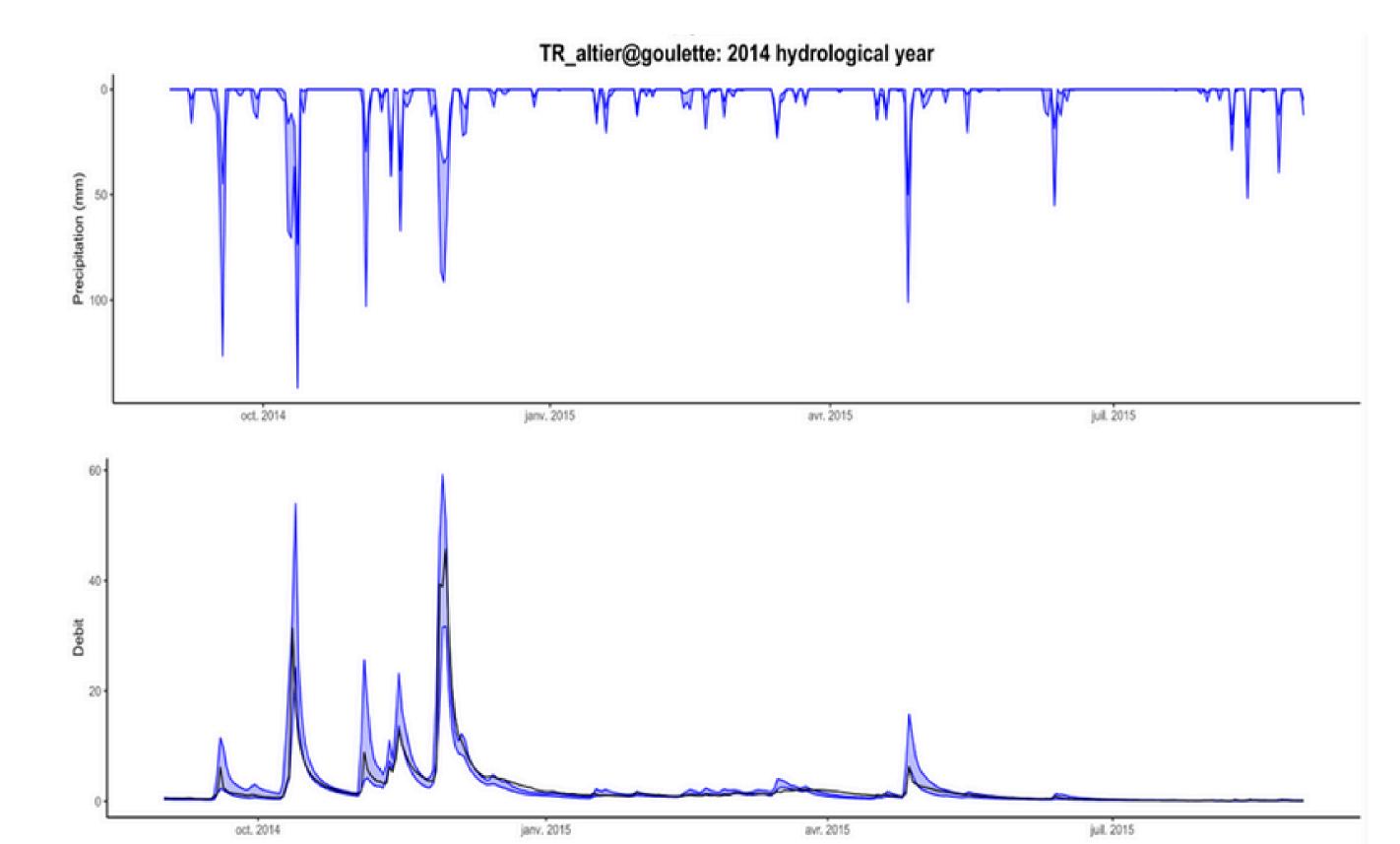
Use of the hydrological model MORDOR-SD (*Garavaglia et al., 2017*) precipitation and temperature inputs distributed by altitudinal bands CRPS on high streamflow values

scoringRules R package to compute CRPS scores



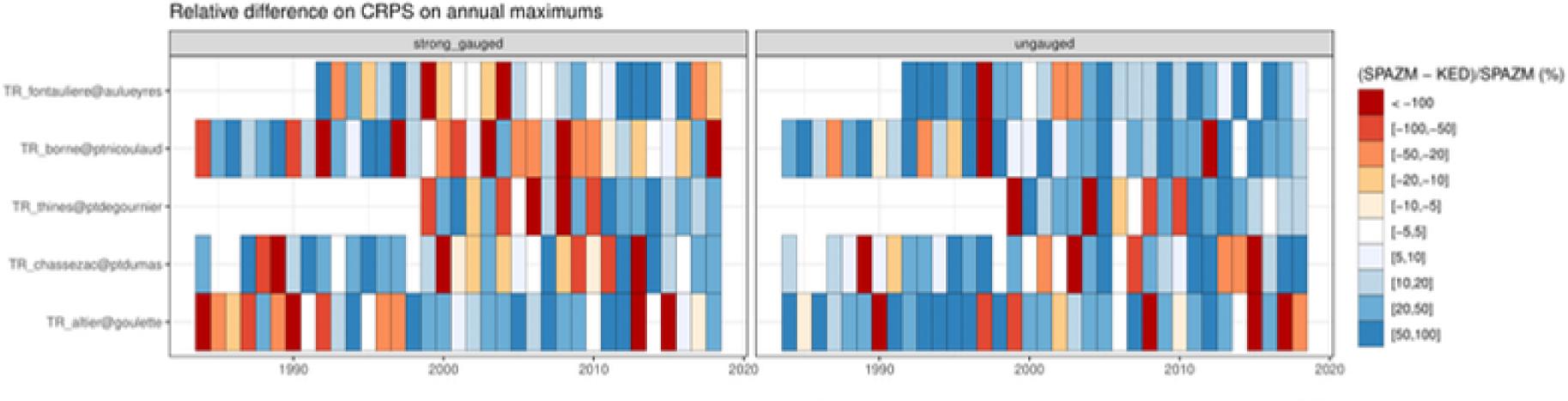
HYDROLOGICAL EVALUATION

Illustration of hydrological modeling



HYDROLOGICAL EVALUATION

Evaluation on annual streamflow maximums



Positive values (blue colors) indicate better predictions with the simulations over SPA2M

No better models in the *strong_gauged case* conditional simulations > SPAZM in the *ungauged case* Too wide condidence intervals for some events

CONCLUSIONS - PERSPECTIVES

Use of CP-RCM simulations to derive anisotropic spatial structure

Conditional simulations to model intense streamflow

CONCLUSIONS - PERSPECTIVES

Use of CP-RCM simulations to derive anisotropic spatial structure

Conditional simulations to model intense streamflow

How to improve the interpolation?

- Non-stationary covariance: variable dependance or mixture of local stationnary covariance (*Risser and Calder, 2017*)
- Include additional **uncertainties**: wind-induced precipitation undercatch, variogram estimation (*Frei and Isotta, 2019*) Bayesian hierarchical models present the ideal framework

